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Abstract
The equivalence between bi-Hamiltonian formulation and Lax representation
of dispersionless integrable hierarchies associated with two-primary models of
Frobenius manifolds is explicitly verified.

PACS number: 02.30.Ik

1. Introduction

In a seminal work [8] (see also [9] for a review) Dubrovin explored the integrability of
topological field theory from geometric point of view and reached to the notions called
Frobenius manifolds. A Frobenius manifold is characterized by a function which can be
viewed as the genus-zero free energy of the corresponding topological field theory. It turns
out that for a finite-dimensional Frobenius manifold with good property one can associate
it with a bi-Hamiltonian integrable hierarchy which is hydrodynamic type of Novikov and
Dubrovin [10] and the free energy is a particular tau-function of the integrable hierarchy. For
example, the free energy of the topological CP1 model at genus zero defines a two-dimensional
Frobenius manifold and the associated integrable hierarchy is the well-known dispersionless
Toda (dToda) hierarchy [7, 9, 14]. At higher genus the free energy provides Gromov–Witten
invariants and the bi-Hamiltonian hierarchy is a dispersive extension of the dToda hierarchy
called extended Toda hierarchy [16, 25].

On the other hand, another important approach to dispersionless integrable hierarchies
is the so-called Lax representation which not only provides a convenient way to construct
conserved quantities but is also closely related to those concepts such as hodograph solutions,
twistor construction, Hirota equations and Landau–Ginzburg formulation in topological field
theories (see, e.g., [1, 4, 17, 18, 21, 22]). In this work we shall focus on dispersionless
integrable hierarchies behind the two-dimensional Frobenius manifolds, including the dToda,
Benney hierarchy (or dispersionless nonlinear Schrödinger equation) and dispersionless
Dym hierarchy (dDym) (see, e.g., [19–21]). Although their Lax representations involving
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logarithmic functions have been proposed several years ago [5, 6, 14], however, only first
few conserved densities and Lax equations have been demonstrated then for comparing with
those results in bi-Hamiltonian formulation. In [15], Fairlie and Strachan provided a proof
for the Lax representation of the dToda case by factorizing dispersionless Lax operators and
representing the conserved charges in terms of Legendre polynomials. Recently, Carlet,
Dubrovin and Zhang [2, 3, 13] provided the Lax representation of the extended Toda hierarchy
by considering the logarithm of a difference operator and the Lax representation of the genus-
zero CP1 model can be recovered in the dispersionless limit.

In the following, we would like to give a direct proof of the equivalence between the
dispersionless bi-Hamiltonian and Lax formulations of the whole set of conserved densities
and hierarchy flows for the aforementioned three two-primary models in a unified fashion.
We shall show that, due to the property of separation of variables in generating functions of
conserved densities, the computations involving logarithmic function become much easier.
Let us start from the dToda hierarchy and recall some notions in the context of Frobenius
manifolds.

2. Dispersionless Toda hierarchy

2.1. Bi-Hamiltonian structure

The primary free energy of the topological CP1 model is a two-primary solution of the Witten–
Dijkgraaf–Verlinde–Verlinde (WDVV) equations [7, 24] of the form

F(t) = 1
2 (t1)2t2 + et2

, t = (t1, t2), (1)

which satisfies the quasi-homogeneity condition LEF = 2F where the Euler vector E(t) =
t1∂1 +2∂2 ≡ Eα∂α and thus defines a two-dimensional Frobenius manifold [8, 9, 11, 12]. From
(1) one can compute the structure constant cαβγ (t) = ∂α∂β∂γ Fh(t) and the metric ηαβ = c1αβ

which is used for lowering and raising indices. It turns out that η11 = η22 = 0, η12 = η21 = 1
and

c1
11 = c2

12 = c2
21 = 1, c1

22 = et2
, cσ

γ δ = 0 otherwise,

where cα
βγ = ηασ cσβγ and ηαβ = (ηαβ)−1. Since ηαβ is a constant flat metric, we call

the variables tα the flat coordinates. Based on these data, one can introduce a genus-zero
bi-Hamiltonian structure of the form

{tα(x), tβ(y)}1 = ηαβ(t (x))δ′(x − y) ≡ Dαβ

1 δ(x − y),
(2)

{tα(x), tβ(y)}2 = (
gαβ(t (x))∂x + �αβ

γ (t (x))tγx
)
δ(x − y) ≡ Dαβ

2 δ(x − y),

which is of hydrodynamic type of Novikov and Dubrovin [10] (see also [23]). Here the metric
gαβ , or intersection form, is given by

gαβ(t) = iE(dtα · dtβ) = Eγ cαβ
γ =

(
2 et2

t1

t1 2

)
and �αβ

γ (t) = −gασ �β
σγ , the contravariant Levi-Civita connection of the flat metric gαβ is

defined by

�
αβ

1 (t) =
(

0 0
1 0

)
, �

αβ

2 (t) =
(

et2
0

0 0

)
.



On dispersionless Lax representations for two-primary models 9429

Since { , }2 + λ{ , }1 forms a flat pencil of the corresponding Frobenius manifold and thus
the hierarchy equations associated with the bi-Hamiltonian structure (2) are given by the
commuting flows [9, 12]

∂tα

∂T β,n
= {tα(x),Hβ,n}1 = {tα(x), H̃β,n−1}2, α, β = 1, 2; n � 0 (3)

with

Hβ,n =
∫

h
(n+1)
β (t (x)) dx, β = 1, 2; n � −1, h(0)

α = ηαβtβ,

H̃β,n−1 = 1

n + µβ + 1/2

(
Hβ,n−1 − 2δ1β

H2,n−2

(n + µβ + 1/2)

)
,

where µ1 = −1/2, µ2 = 1/2. It may be noted [8] that the expression (3) of commuting
flows fails to satisfy the second structure for (β, n) = (1, 0) since this pair obeys the condition
n+µβ +1/2 = 0. Hence the T 1,0 flow admits only the first Hamiltonian structure. A Frobenius
manifold is resonant if it has such a pair (β, n). Since ∂tα/∂T 1,0 = ∂tα/∂x we may identify
T 1,0 = x. The first two nontrivial Hamiltonian equations of (3) are

∂

∂T 1,1

(
t1

t2

)
=

(
1
2 (t1)2 + (t2 − 1) et2

t1t2

)
x

,
∂

∂T 2,0

(
t1

t2

)
=

(
et2

t1

)
x

.

2.2. Conserved densities

The bi-Hamiltonian recursive relation (3) can be written in a form as ∂α∂βhσ (t, z) =
zc

γ

αβ(t)∂γ hσ (t, z) [8, 9] or in components

∂2
1 hα(t, z) = z∂1hα(t, z) (4)

∂1∂2hα(t, z) = z∂2hα(t, z) (5)

∂2
2 hα(t, z) = z et2

∂1hα(t, z), (6)

where hα(t, z) = ∑
n=0 h(n)

α (t)zn are the generating functions of the conserved densities
h(n)

α . Equations (4) and (5) together with normalization ∂1hα(t, z) = zhα(t, z) + η1α yield
hα(t, z) = ezt1

fα(t2, z) − η1αz−1, while (6) implies that fα(t2) satisfies f ′′
α − z2et2

fα = 0.
Setting y ≡ 2z et2/2 then vα(y) = fα(t2) obeys

y2v′′
α + yv′

α − y2vα = 0, (7)

which has a general solution of the form

vα(y) = C(1)
α I0(y) + C(2)

α K0(y),

where C(1)
α and C(2)

α are functions of z only, and I0 and K0 are the modified Bessel functions
of first and second kinds of order zero, respectively. In view of the initial conditions
h(0)

α (t, 0) = ηαβtβ one has [12]

h1(t, z) = −2 ezt1{K0(2z et2/2) + (ln z + γE)I0(2z et2/2)}
h2(t, z) = z−1{ezt1

I0(2z et2/2) − 1}
or

h
(n)
1 (t) =

[ n
2 ]∑

s=0

(t1)n−2s est2
(t2 − 2cs)

(n − 2s)!(s!)2
(8)
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h
(n)
2 (t) =

[ n+1
2 ]∑

s=0

(t1)n−2s+1 est2

(n − 2s + 1)!(s!)2
, (9)

where the symbol [x] denotes the largest integer less than x, γE = 0.577 215 66 . . . is the
Euler–Mascheroni constant and cs = ∑s

l=1 1/l with c0 = 0. The first few Hamiltonian
densities are given by

h
(0)
1 = t2, h

(1)
1 = t1t2, h

(2)
1 = (t1)2t2

2
+ (t2 − 2) et2

,

h
(0)
2 = t1, h

(1)
2 = (t1)2

2
+ et2

, h
(2)
2 = (t1)3

6
+ t1et2

.

2.3. Lax representation

Proposition 1 [14]. The conserved densities h(n)
α (t) of the dToda hierarchy can be expressed

in terms of the Lax function L = p + t1 + et2
p−1 as

h
(n)
1 (t) = 2

n!
(Ln(log L − cn))[0], n � 0 (10)

h
(n)
2 (t) = 1

(n + 1)!
(Ln+1)[0], n � −1, (11)

where
(∑

k akp
k
)

[j ] = aj and log L is given by the prescription

log L = t2

2
+

1

2
log

(
1 + t1p−1 + et2

p−2
)

+
1

2
log

(
1 + t1e−t2

p + e−t2
p2

)
with the proviso that we shall Taylor expand the second term in p−1, whereas in p for the last
term.

Proof. For h
(n)
1 (t), by virtue of the ‘scaling’ property [14]

d

dL
Ln(log L − cn) = nLn−1(log L − cn−1),

we have ∂h
(n+1)
1 (t)/∂t1 = h

(n)
1 (t), n � 0 or ∂1h1(t, z) = zh1(t, z). Then h1(t, z) =

ezt1
f1(t

2, x) where f1(t
2, z) = h1(0, t2, z) = ∑∞

n=0 h
(n)
1 (0, t2)zn. Let us compute the

quantities h
(n)
1 (0, t2). By setting t1 = 0 in (10), after some algebra, we get

h
(2l+1)
1 (0, t2) = 0, h

(2l)
1 (0, t2) = t2 − 2dl

(l!)2
, k � 0,

where

dl = c2l + (l!)2
l−1∑
k=0

(−1)l−k

k!(2l − k)!(l − k)
.

It turns out that

h1(t, z) = ezt1
∞∑
l=0

h
(2l)
1 (0, t2)z2l =

∞∑
n=0


[ n

2 ]∑
s=0

(t1)n−2s est2
(t2 − 2ds)

(n − 2s)!(s!)2

 zn.
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Comparing with (8), the remaining task is to show that ds = cs for s � 0. For s = 0, we have
d0 = 0 = c0. On the other hand, using the identity

m∑
l=0

(−1)l
(

n

l

)
= (−1)m

(
n − 1

m

)
, n � 1, m � 0, (12)

we have

ds+1 − ds = 1

2s + 1
+

1

2s + 2
+ (s!)2

s∑
k=0

(−1)s−k(k − s − 1)

k!(2s − k + 2)!

= 1

2s + 1
+

1

2s + 2
− 1

(2s + 1)(2s + 2)

= 1

s + 1
= cs+1 − cs,

which implies ds = cs for s � 0. For h
(n)
2 (t), from (11) we have ∂h

(n+1)
2 (t)/∂t1 = h

(n)
2 (t), n �

−1 with h
(−1)
2 = 1, or ∂1h2(t, z) = zh2(t, z) + 1. Then h2(t, z) = ezt1

f (t2, x) − z−1 where
f2(t

2, z) = h2(0, t2, z) + z−1 = ∑∞
n=−1 h

(n)
2 (0, t2)zn. It is easy to show that

h
(2l)
2 (0, t2) = 0, h

(2l−1)
2 (0, t2) = elt2

(l!)2
, l � 0

and hence

h2(t, z) = ezt1
∞∑
l=0

elt2

(l!)2
z2l−1 − z−1 =

∞∑
n=0


[ n+1

2 ]∑
l=0

(t1)n−2l+1 elt2

(n − 2l + 1)!(l!)2

 zn,

which recovers the conserved densities (9). �

Proposition 2 [14]. The Hamiltonian equations (3) of the dToda hierarchy can be written in
the Lax form as

∂L

∂T β,n
= {Bβ,n, L}, β = 1, 2; n � 0 (13)

with

B1,n = 2

n!
(Ln(log L − cn))�0, B2,n = 1

(n + 1)!
(Ln+1)�0,

where the projection
( ∑

k akp
k
)
�j

= ∑
k�j akp

k and the Poisson bracket {f, g} ≡
p∂pf ∂xg − p∂xf ∂pg.

Proof. Let Bβ,n = ∑
i�0 b

(i)
β,n(t)p

i , then from ∂1Bβ,n and ∂2Bβ,n, the coefficients b
(i)
β,n(t)

satisfy

∂b
(i)
β,n(t)

∂t1
= b

(i)
β,n−1(t),

∂b
(i)
β,n(t)

∂t2
= et2

b
(i+1)
β,n−1(t), n � 0.

On the other hand, from the p0 and p−1 terms of the Lax equation (13) we have

∂t1

∂T β,n
=

(
∂b

(0)
β,n+1(t)

∂t2

)
x

,
∂t2

∂T β,n
= (

b
(0)
β,n(t)

)
x
,

which together with b
(0)
β,n(t) = (Bβ,n)[0] = h

(n)
β (t) implies the Hamiltonian flows (3). �
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3. Benney and dDym hierarchies

Having established the Lax formulation for the dToda hierarchy, we now turn to another
two-primary model with logarithmic-type primary free energy: the Benney hierarchy and the
dDym hierarchy.

3.1. Benney hierarchy

The two-dimensional Frobenius manifold corresponding to the Benney hierarchy is described
by the primary free energy

F(t) = 1
2 (t1)2t2 + 1

2 (t2)2
(
log t2 − 3

2

)
,

which satisfies LEF = 4F with E = t1∂1 +2t2∂2. Just like the dToda hierarchy, the associated
bi-Hamiltonian structure can be constructed from the primary free energy as

Dαβ

1 =
(

0 ∂

∂ 0

)
, Dαβ

2 =
(

2∂ t1∂ + t1
x

t1∂ 2t2∂ + t2
x

)
.

The Hamiltonian flows of the Benney hierarchy are defined as (3) with

H̃β,n−1 = 1

n + µβ + 1/2

(
Hβ,n−1 − 2δ2β

H1,n−2

(n + µβ + 1/2)

)
,

where µ1 = 1/2, µ2 = −1/2 and the pair (β, n) = (2, 0) is resonant. Following the similar
discussions, the conserved densities of the Benney hierarchy can be expressed in terms of the
modified Bessel functions as [12]

h1(t, z) = z−1
√

t2 ezt1
I1(2z

√
t2)

h2(t, z) = z−1{2z
√

t2 ezt1
(K1(2z

√
t2) − (log z + γE)I1(2z

√
t2)) − 1}

or

h
(n)
1 (t) =

[ n
2 ]∑

s=0

(t1)n−2s(t2)s+1

(n − 2s)!s!(s + 1)!
(14)

h
(n)
2 (t) = (t1)n+1

(n + 1)!
+

[ n−1
2 ]∑

s=0

(t1)n−2s−1(t2)s+1

(n − 2s − 1)!s!(s + 1)!
(log t2 − cs+1 − cs). (15)

Proposition 3. The conserved densities h(n)
α (t) of the Benney hierarchy can be expressed in

terms of the Lax function L = p + t1 + t2p−1 as

h
(n)
1 (t) = 1

(n + 1)!
res(Ln+1), n � −1 (16)

h
(n)
2 (t) = 2

n!
res(Ln(log L − cn)), n � 0, (17)

where res
( ∑

k akp
k
) = a−1 and log L is given by the prescription

log L = 1
2 log t2 + 1

2 log(1 + t1p−1 + t2p−2) + 1
2 log

(
1 + t1

t2 p + 1
t2 p

2
)

with the proviso that we shall Taylor expand the second term in p−1, whereas in p for the last
term.
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Proof. The proof is similar to that of the dToda case. From (16) and (17) we have
∂1hα(t, z) = zhα(t, z) + η1α and thus hα(t, z) = ezt1

fα(t2, z) − η1αz−1 where fα(t2, z) =∑
k=0 h(k)

α (0, t2)zk + η1αz−1. By setting t1 = 0 in (16) and (17), it is easy to show that

h
(2l)
1 (0, t2) = (t2)l+1

l!(l + 1)!
, h

(2l−1)
1 (0, t2) = 0

and

h
(2l)
2 (0, t2) = 0, h

(2l−1)
2 = (t2)l

l!(l − 1)!
(log t2 − cl − cl−1), l � 1.

Substituting h(k)
α (0, t2) into fα(t2, z) we reach the conserved densities (14) and (15). �

Proposition 4. The Hamiltonian equations of the Benney hierarchy can be written in the Lax
form as

∂L

∂T β,n
= {Bβ,n, L}, β = 1, 2; n � 0, (18)

where

B1,n = 1

(n + 1)!
(Ln+1)�1, B2,n = 2

n!
(Ln(log L − cn))�1

and the Poisson bracket {f, g} ≡ ∂pf ∂xg − ∂xf ∂pg.

Proof. Let Bβ,n = ∑
i�0 b

(i)
β,n(t)p

i+1 and consider the t1 and t2 derivatives over Bβ,n then we
obtain the relations

∂b
(i)
β,n(t)

∂t1
= b

(i)
β,n−1(t),

∂b
(i)
β,n(t)

∂t2
= b

(i+1)
β,n−1(t), n � 0.

With the help of the above relations, the p0 and p−1 terms of the Lax equation (18) can be
written as

∂t1

∂T β,n
=

(
∂
(
t2b

(0)
β,n+1(t)

)
∂t2

)
x

,
∂t2

∂T β,n
=

(
∂
(
t2b

(0)
β,n+1(t)

)
∂t1

)
x

.

Thus the remaining task is to show that t2b
(0)
β,n(t) = h

(n)
β (t). This is indeed the case since from

the identities

res(Ln∂L/∂p) = 0, res(Ln(log L − cn)∂L/∂p) = 0, n � 0 (19)

and ∂L/∂p = 1 − t2p−2 we have

res(Ln) = t2(Ln)[1], res(Ln(log L − cn)) = t2(Ln(log L − cn))[1]. �

3.2. dDym hierarchy

Finally, we come to the dDym hierarchy. The associated two-dimensional Frobenius manifold
is described by the primary free energy

F(t) = 1
2 (t1)2t2 − 1

2 log t2,

which satisfies LEF = 0 with E = t1∂1 − 2t2∂2. The corresponding bi-Hamiltonian structure
can be deduced from the primary free energy as

Dαβ

1 =
(

0 ∂

∂ 0

)
, Dαβ

2 =
(

2
(t2)2 ∂ − 2

(t2)3 t
2
x t1∂ − t1

x

t1∂ + 2t1
x −2t2∂ − t2

x

)
,
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and the commuting Hamiltonian flows of the dDym hierarchy are defined as (3) with

H̃β,n−1 = 1

n + µβ + 1/2

(
Hβ,n−1 + 2δ1β

H2,n−4

(n + µβ + 1/2)

)
,

where µ1 = −3/2, µ2 = 3/2 and the resonance occurs at the pair (β, n) = (1, 1). The
generating functions of conserved densities of the dDym hierarchy have the following exact
forms [12]:

h1(t, z) = z
√

t2 ezt1

{
2

(
log z + γE − 1

2

)
J1

(
2z√
t2

)
− πY1

(
2z√
t2

)}
h2(t, z) = z−1

{
z−1

√
t2 ezt1

J1

(
2z√
t2

)
− 1

}
or

h
(n)
1 (t) = (t1)nt2

(n)!
+

[ n−2
2 ]∑

s=0

(−1)s(t1)n−2s−2(t2)−s

(n − 2s − 2)!s!(s + 1)!
(log t2 + cs+1 + cs − 1) (20)

h
(n)
2 (t) =

[ n+1
2 ]∑

s=0

(−1)s(t1)n−2s+1(t2)−s

(n − 2s + 1)!s!(s + 1)!
, (21)

where J1 and Y1 are the Bessel functions of first and second kinds of order 1, respectively.

Proposition 5. The conserved densities h(n)
α (t) of the dDym hierarchy can be expressed in

terms of the Lax function L = − 1
t2 p + t1 + p−1 as

h
(n)
1 (t) =

{−res(L−1), n = 0

− 2
(n−1)! res

(
Ln−1

(
log L − cn−1 − iπ−1

2

))
, n � 1

(22)

h
(n)
2 (t) = 1

(n + 2)!
res(Ln+2), n � 0, (23)

where L−1 is expanded in p−1 and log L is given by the prescription

log L = iπ

2
− 1

2
log t2 +

1

2
log(1 − t1t2p−1 − t2p−2) +

1

2
log

(
1 + t1p − 1

t2
p2

)
with the proviso that we shall Taylor expand the second term in p−1, whereas in p for the last
term.

Proof. From (22) and (23) we have ∂1hα(t, z) = zhα(t, z) + η1α and thus hα(t, z) =
ezt1

fα(t2, z) − η1αz−1 where fα(t2, z) = ∑
k=0 h(k)

α (0, t2)zk + η1αz−1. By setting t1 = 0
in (22) and (23), it is easy to show that

h
(0)
1 = t2, h

(2l)
1 (0, t2) = (−1)l−1(t2)−l+1

l!(l − 1)!
(log t2 + cl + cl−1 − 1), h

(2l−1)
1 (0, t2) = 0

and

h
(2l)
2 (0, t2) = 0, h

(2l−1)
2 = (−1)l(t2)−l

l!(l + 1)!
, l � 1.

Substituting h(k)
α (0, t2) into fα(t2, z) we recover the conserved densities (20) and (21). �

Remark. We may redefine cn as cn−cn−1 = 1/n with c0 = −1/2+ iπ/2 then the logarithmic-
type conserved densities in (22) are written as res(Ln−1(log L − cn−1)). Here, however, we
keep the definition of cn same as the dToda case.
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Proposition 6. The Hamiltonian equations of the dDym hierarchy can be written in the Lax
form as

∂L

∂T β,n
= {Bβ,n, L}, β = 1, 2; n � 0 (24)

with

B1,n =
{−(L−1)�2, n = 0

− 2
(n−1)!

(
Ln−1

(
log L − cn−1 − iπ−1

2

))
�2 , n � 1,

B2,n = 1

(n + 2)!
(Ln+2)�2, n � 0

where L−1 is expanded in p and the Poisson bracket {f, g} ≡ ∂pf ∂xg − ∂xf ∂pg.

Proof. Rewrite the La equation (24) as

∂L

∂T β,n
= {L, B̄β,n}

where

B̄1,n =
{−(L−1)�1, n = 0

− 2
(n−1)!

(
Ln−1

(
log L − cn−1 − iπ−1

2

))
�1 , n � 1

B̄2,n = 1

(n + 2)!
(Ln+2)�1, n � 0.

Let B̄β,n = ∑
i�0 b

(i)
β,np

1−i then we have

∂b
(i)
β,n(t)

∂t1
= b

(i)
β,n−1(t),

∂b
(i)
β,n(t)

∂t2
= b

(i+1)
β,n−1(t)

(t2)2
.

Extracting the p0 and p1 terms of the Lax equation (24) we have

∂t1

∂T β,n
= −

(
∂
(
t2b

(0)
β,n+1(t)

)
∂t2

)
x

=
(

∂h
(n+1)
β

∂t2

)
x

∂t2

∂T β,n
= −

(
∂
(
t2b

(0)
β,n+1(t)

)
∂t1

)
x

=
(

∂h
(n+1)
β

∂t1

)
x

,

where we have used the fact that h
(n)
β = −t2b

(0)
β,n by taking into account the similar identities

(19) for the Lax operator L = − 1
t2 p + t1 + p−1. �
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